S\
i

MM

g T :
NASA TR R-148

NASA TR R-148

| /V b 3~ / 3 /7 23
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION s J ¢

TECHNICAL REPORT
- R-148

THE CRITICAL INCLINATION PROBLEM IN

" By WILLIAM A. MERSMAN

1962

For

gale by the Stperintendent of Documents, U.S. Governme nt_Printing Office, Wuhi gtonﬁ DC Ye-rly bwrlptlo 815 foralxn 319
lizleeopypﬂeevnleuweordlnztom wewwenew= Price 40 cents



A



TECHNICAL REPORT R-148

THE CRITICAL INCLINATION PROBLEM IN
SATELLITE ORBIT THEORY

By WILLIAM A. MERSMAN

Ames Research Center
Moffett Field, Calif.




CONTENTS

Page
SUMMARY . 1
INTRODUCTION . . 1
TABLE OF TMPORTANT SYMBOLS . . . ___. 1
EQUATIONS OF MOTION . ________ 2
Canonieal Coordinates. .. _______ 2
Reduction to Two Dimensions_____________________ ____________________ 2
Introduction of True Anomaly as Independent Variable . _____________ 4
THE INTERMEDIATE ORBIT . _ _ .. 5
THE APSIDAL EQUATIONS_ ____ . ___. e 6
THE PHASE-PLANE INTEGRAL  _ o ____ 7
SOLUTION OF THE APSIDAL EQUATIONS IN THE ELLIPTIC REGION____ 16
The Tibration Region, 0<k<l1____ o __ 18
The Separatrix. . __________ o _____. 19
The Transition Region, k> 1______________________________________________ 20
SOLUTION OF TIIE APSIDAL EQUATIOXNS IN THE TRIGONOMELTRIC
REGION .. e 24
DISCUSSTION 28
CONCLUDING REMARKS. o ... 28
REFERENCES . 29
TABLE . o _______ 29



TECHNICAL REPORT R-148

THE CRITICAL INCLINATION PROBLEM IN
SATELLITE ORBIT THEORY

By Wintiaar A. Merswan

SUMMARY

Solutions of the satellite orbit problem are obtained
that do not exhibit singularities af the critical ineli-
nation angle. Series representations are obtained,
their regions of convergence are exhibited, and
quantitative measures of their speeds of convergence
are provided for use in numerical computations.

INTRODUCTION

The first attempis to develop a theory of
satellite orbits about an oblate planet (refs.
1, 2, 3) produced solutions containing a singularity
at the “eritical Inclination angle,” are tan 2.
The singularity occurs only in the long-period
terms of the solution and can be removed if
these terms are isolated and treated by special
methods (refs. 4, 5, 6).

Il only the “main problem” (ref. 1) is considered,
in which the series for the planet’s gravitational
potential is truncated at the second harmonic,
the prinecipal results are that the apsidal motion
is purely oscillatory when the inclination angle
Jies within a certain region (the libration region)
centered at the critical value; pericenter oscillates
about the node and never reaches the points of
maximum  declination.  When the inclination
angle lies outside the libration region, the apsidal
motion is essentially secular with small oscilla-
tions superimposed (refs. 1, 2, 3). On the bound-
ary between these two regions the apsidal motion
is aperiodic, and pericenler approaches the point
of maximum declination asymptotically.

Extension of the series representation ol the
gravitational potential to clude the fourth
harmonic merely shilts the stable position of
pericenter, in the libration region, from the node
to the point of maximum declination,

These well-known results, for the main problem,
are obtained here by a new method, based on the
intermediate orbit of reference 7. The use of the
intermediate orbit rather than the osculating
ellipse as a point of departure has certain atirac-
tive features that lead to mathematical simplifica-
tion and improvement. The simplification con-
sists of introducing a parameter that is a general-
ization ol elliptical eccentricity, but which is a
constant for the intermediate orbit. This elimi-
nates troublesome apparent singularities for
nearly circular orbits.

The improvement consists of presenting the
solution in the form of infinite series, the first-
term representing the previously published solu-
tions, and of determining precisely the regions of
convergence. Furthermore, precise measures of
the speeds of convergence are obtained, so that
{runcation for numerical purposes can be effected
with full error control.

TABLE OF TMPORTANT SYMBOLS

a parameters involving inclination angle,
b cccentricity, and oblateness param-
Ty eter

¢ cos [

I cecentricity

E K complete elliptic integrals

I inclination angle

. J

J ;75

J Jeffreys’ oblateness constant

I 1, coefficients in series of elliptic functions
k& modulus of elliptic function

o() order of magnitude

P semilatus rectum, dimensionless
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conjugate momenta in canonical equa-
tions, dimensionless

Pos Pes Po

q perigee distance, dimensionless
s sin
H time, dimensionless
¢ true anomaly
@ argument of latitude
v convergence parameter, measure of
speed of convergence
p geocentric distance, dintensionless
£ dimensionless variable measuring de-
viation of inclination angle or perigee
distance from its initial value
£, coeflicients in Fourier series for £
w argument of pericenter
dw . .
o' o’ apsidal velocity
Gy coefficients in Fourler series lor w
Q right ascension of ascending node
SUBSCRIPTS
0 initial conditions
1 modulus &;
¢ values ut convergence boundary
8 ralues al separatrix
SUPERSCRIPTS
e degrees, minutes, seconds of arc
~ periodic component
BINOMIAL COEFFICTENTS
k, R j—k)!

EQUATIONS OF MOTION

CANONICAL COORDINATES

Tt has been shown in reference 7 that the problem
of artificial satellite motion ecan be described in
dimensionless, canonical form as follows. Tet R,
the equatorial radius of the planet, be taken as the
unit of length, and (3G as the unit of time.
Then the following dimensionless variables con-
stitute a canonical set (see fig. 1):

P radial distance

argument of latitude

right ascension of the ascending node
p,  radial velocity

pe  angular momentum

<28

AERONAUTICS AND SPACE ADMINTSTRATION

pa  component of angular momentum along
the planet’s polar axis
t time

Corresponding to equations (8) of reference 7, the
canonical equations, in the absence of dissipative
forces, are
i{, DU (h/l oll I
di oy di - or M

where z; represents any of the coordinates (p, ¢,
Q) and y; the conjugate momentum (p,, p,, po).
The amiltonian, 77, is defined by

I7= +] Pe ) -—%—S'(p,(p,f.),]) (2)

where S is the disturbance function, and the inch-
nation angle, 7, is given hy

cos J=L2 (3)
L2
artificial satellite

For the main problem of

theory the disturbance function is {eq. (10) ol
ref. 7)
J o .
== o—sin® I sin?
p‘(\d sin® [ sin (p)
J/o1 1, 1
p‘( 0—}—2( +28 cos g:) (4)
where
c—cos I
s=sin [

and .J is Jeffrevs’ constant for the oblateness. TIts
numerical value for Earth is 0.00162392 (ref. 8,
p. 17, with J=1.5.1,).

REDUCTION TO TWO DIMENSIONS

Whenever the disturbanee function possesses
axial symmetry, the problem can be reduced
essentially to two dimensions as follows. Axial
symmetry implies

o8

BT

Henee, the motion of the node is given by

pa=constant
d@_ 1 oS (5)
dt” p,sim 1ol
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pole

Ficrre 1.—Coordinate system.

The remaining canonical equations become

dpo_pst 1

dp

P e T 2 0 0
de p, cot [0S dp, 0S
{5 pe o & oe

(6)

oI’ dt Qe

This set of equations is self-contained, since Q
does not enter it, and pg is constant.  Once it has
been solved, the motion of the node can be ob-
tained directly from equation (5) by quadrature.

Tt.is also convenient to introduce a new independ-
ent variable in place of the time, {. Even in the
classical, tswo-body problem such a transformation

is customary. TFollowing the procedure of refer-
ence 7, define an auxiliary angle, 6, by

de dy a8 .
qi—ar Tat

__Pe
=2

with the initial condition
po=0 when =0
The nodal equation now becomes

23
ol

dQ_e0* (. l)
48~ p,2\sin I,
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The time cquation becomes

dt  p*
and the two-dimensional problem becomes
do_p'ps dpe_pe 1 | p*OS
0 p,  d8 p  po ! p. Op 10
Je__ptcoToS dp,_ptos {0
de Pl oI d9 p, oo

Equations (8) and (9) for @ and ¢ will not be
considered further in this report. The essential
nature of their solution has been adequately dis-
cussed in reference 7 (eqs. (64) and (72)).

INTRODUCTION OF TRUE ANOMALY AS INDEPENDENT
VARIABLE

Introducing the disturbance function S from
cquation (4) gives the two-dimensional problem

do_o'r, ]

a6  p,

dpo_pe_ 1, J . (1—3 ¢*— 5% cos 259\)

6 p  pa pep®\2 2 > (11)
de c

—_——=f e - ‘)

=1 prp (1= cos 2¢)

dp, LA

A S sin 2¢

dp Pep ¢ ’

Now introduce the true anomaly, », as inde-
pendent variable, and the quantities {7, V), £, w as
dependent variables, defined as follows:

=L )
P
V=pope
A
g—&’—l:i—l—g" s
D oot €o®
w =p—0 J
where
pP=ps

and the subscript 0 denotes initial values tuken at
any specific perigee.  Note that the symbol £ has
a different meaning here than in reference 7. The
true anomaly » will be regarded temporarily as an

arbitrary Tunction of 8, subject only to the initial
conditions:

§=0 )

U=1+¢,

V=0

£=0 > when =0 (13)
P—=Do

W=y

=1, )

The definition of 7 will be completed in the next
section.

This transformation is motivated by the Tact
that, when J=0, the solution is

-

v=9
U=1-+e,c0870

V=¢,sin e

=0 >when J=10
w=uwy

=D

I=1, J

Thus the constants e, wg ps, Iy are the usual
osculating elliptical values of eccentricity, argu-
ment ol pericenter, semilatus rectum, and inelina-
tion angle, evaluated at an arbitrary, specifie
pericenter chosen as the epoch.

The equations of motion now become

:;—f =2/ (L) sin z;% ]
:’%’:—1 414 jerlU (1 —cos 2¢) ] i;—?
%=(—T*v——2_/'.>‘2("~’ sin 2@5‘: - (1)
i -1 0 -3 cos 2)

— 782V sin 2<p:| :570'4
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where
T T e ]
Jgpz—‘pl)g (I +.E)
Do
R

ct=c*(1+§)

82 j— SUZ —_ (-025

e=r+tw )
An approximate solution of these equations,
accurate to 0(J?), will be obtained by an iterative
procedure. At the first step, the terms containing
o explicitly in the equations for & U, and V will
be neglected. The true anomaly, z, can then be
defined in such a way that U and V7, and hence
p and dp/dt, contain no secular terms (sce ref. 7).
This approximate solution for U7 can then be
inserted in the complete equations for & and w,
which can be solved by neglecting the short-
period terms.  The solution obtained in this way
contains all the essential features of the orbit as
regards the motion of pericenter, and constitutes
the objective of the present report. In principle,
the iterative procedure could be continued, by
inserting the solution for ¢ and « back inte the
complete equations for {7 V) ete.  While this has
not been done, it seems plausible a priori that the
net effect of such iterations would be to introduce
short-period terms which would have no essential
effect on the qualitative nature of the motion.

THE INTERMEDIATE ORBIT

Following the procedure outlined in the pre-
ceding section, define the intermediate orbit as the
solution of the simplified set of equations

ds 7
dr =0
a0 b
= < (16)
= —1—oT % |
where
=72 (3¢2—1) (17)

The first equation gives £=0, and hence, p, s, ¢, o,
and I are constants for the intermediate orbit.

Equations (16) for U and V are equivalent to
the first, fourth, and fifth of equations (12) of
reference 7; that is, the intermediate orbit here is
identical to that of reference 7. It will berederived
here by the following, simpler procedure, which is
sufficient for the present restricted problem.
Multiplying the V equation by 2V, the U equa-
tion by 2U, adding and integrating yields the
energy integral

V‘2~—2U+Uz—% ol*=gn=conslant (18)

where 7 is obtainable from the initial conditions:
2 3

n=e—1—; o(1+e) (19)

Tt was shown in reference 7, equations (53),
(54), (58), that the true anomaly, #, can be de-
fined as a [unction of 6 by means of elliptic func-
tions in such a way that p and dp/dt contain no
secular terms. A more appropriate form of the
solution for the present purpose, that avoids the
use of elliptic functions, is:

U=wuy+u, cos v A

wo_ T

([l‘ \i] —A’llv } (20)
.dr il_‘_y_l . —=

T__W(]H \f%mzx] T—Jl ]

where uo, w, f, k, are constants, determined as
follows: Tusert equations (20) in the energy inte-
gral, rearrange as a cubic polynomial in U, and
equate the coefficients to zero. The resulting
equations can be transformed, by means of the
initial condition

U+ uy=1-+eo (21)
mto
F=1+5 0 (145 onf))
2
ltl‘—gff.[ . (22)

ue=f <] —%—12 km>

uy=1-+eo—U J
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Since lol<(|J|<1, the equation for f can be
solved by the obvious iterative procedure o any
desired accuracy. Finally, if the radical y1—#T
is expanded by the binomial theorem and rear-
ranged as a Fourier scries, the solution can be
written in the form

U=u,+u, cos

2, sin nv

“ 1
O=rge+23 =
n=17

@3)
=>7 V), sin ne J
n=1
where, to 1(e?), the cocfficients ara
1 3
’l[0:1+0' 1"’3 ot )+d?
L, 2 2 2
(2'—3‘ 60—}—5 502-—-6 gu“> . e
1,
711:”0—'0(1 +§ Pn‘>—02
5 2 2 2 .,
(‘2_3 Po+§ 91\2—6 "u) s
. {5, 5
1?0:1—3—0Ji-ga (§+ﬁ eu") e
1 . 1 1
U;::g eg0 1ot (—-g—}—pﬂ_g 002) ..
b (24
Py==-:- ¢ 20—2 ( )
2 12 0 P
Z‘,,:O(a") e

‘vl:_ Co— 0 (] +(’0+’; 6702)_0'2

1 1 1, .
(L+6m+§e3+sea>--

‘7,:—6 eqla- (; eo— b €2 —I— oy )

- 1
I/;g:_,?? (’030'2 e .
V,—0(") J

It may be remarked that this procedure ean be
generalized.  If higher harmonies are to be in-
cluded in the planet’s gravitational potential, it is
merely necessary to add two powers of U to the

AERONAUTICS AND SPACE ADMINISTRATION

radicand (eq. (20)) for each even-ordered harmonie.
Similarly, the seculur effects of lunar and solar
perturbations can be handled by adding negative
powers of U to the radicand. In every case the
number of constants (uy, u,, f, etc.) is one greater
than the degree of the energy integral, considered
as a polynomial in U, so that the procedure js
determinate. The procedurce of reference 7 can-
not be generalized so easily.

While equation (23) for 8 in terms of » could be
inverted to exhibit » explicitly as a funetion of 6,
such a procedure could serve no useful purpose
here.  All that is needed is d8/dr as a function of
v, since this is the quantity that occurs in all the
differential equations,  Thimately every quantity
of physical interest ean he expressed explicitly
as a function of r, so that it can be regarded as a
prime independent variable whose physical sig-
nificance is of no real concern.

THE APSIDAL EQUATIONS:

Tr the solution for the intermediate orbit is
substituted in the general equations (14), the
equations for £ and w become, to 0(J%):

{
i[f‘ -—Jo{ [1+U(1( + (’0 j]

- (4.~'02~1).§} sin (20+2w)

. 4 1
—}—jo{,\-ﬂﬂ [(’O—i—au (—1+§ =g (_.Uz‘)]

+(452—1Deyt }

[sin (2-+2w)+sin 3v+2w)]

+(1; Joooedsdsin 2w+ sm {de+2adt 1 F)

and

dw 1
Z[;) 270()('0 1)+ Jooo

5 5 "’3
—3 24 €6t Cu
. 15 9 1
+ Jok [:‘2 c?—1+ey (5 ('02—3‘>

3
cos v—y eel? cos (042w)

—3¢y? cos (21:+2w)—g Csley COS (31:+2w)]
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—]75 .7(1‘7npu2(’()2 cos 2w

i
‘+[“§ 040yt oy’ <_:]§+(’0 o €o ):I
cos v+ 17) eolo? cos 2v
+]n('n {[:”—]"‘0'0< +’ ’“)—I(OS (20 w)
+[p0+ [0 <41 +§ (70'_§ ('n2>]

) 1
[cos vy €08 (v42w)

1 . . 1
—9 cos (3:*1‘—2@)]—!—-0; oyet cos 2o

1 .
—39 ayeg? cos (4z'+2w)} (26)
where
. 1
Jo —])02
@)
co=5 Jul3co? —1)
s |
and the initial conditions are
£=0 )
? when v==0 (28)
w=wy

Although these cquations appear quite for-
midable, it is possible to simplify them without
sacrifieing any of the essential features of their
solution. Thus, begin by obtaining the solution
of the & equation, accurate to 0(J), with « being
treated as a constant. This approximate solution
is

&= foso? I:(l +‘§ (’ﬂ> cos 2w—req cos (04 2w)

1
— 008 (22'+2w)——§ 0y COS (3v+2w):|

If this is substituted back into the right members,
but only in those terms in which £ is multiplied
by a trigonometric function containing the true
anomaly, », in its argument, the resulting equa-
tions take the form, to 0(J%):

([—Iz—b sin 2w+S.P.T.
dv
(29)
dw
%:;mLa cos 20+S.P.T.

J
66385163
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where S.P.T. denotes short-period terms of the
form sin (mr+4nw) or cos (mr+nw), with m=0,
and the quantities z, a, and b are defined by

. /15 h
=T+ Jo (‘2)‘ 502_1)5

To= bR 70()('0 —1)+7n I:\ 48 eq* e

13,1 . s (57 11
(—4+8”">+c° N 16"”>:|
a= 7,202 1___ , 2

Jo €y ((i + )

1. - 15
b:ﬁ JtedtBe?—1) (1—ed?) (1_Tz Co')

)

(30)

The coeflicient, b, is O(J?) since the definition
of « has introduced one additional power of .J.

The core of the problem consists in solving the
equations obtained when the short-period terms
are neglected; that is,

dz .
—=—0sin 2«
dv
; (31
(T;):;r—{«a c0s 2w
¢ J
with the initial conditions
L= -'To}
k when =0 (32)
w'*wnj

THE PHASE-PLANE INTEGRAL

If the variable, x, is climinated fromequations
(31) by differentialing the second and subtracting
{he first, the resulting equation can be put in the
form

dz: 1, N i O
2 =57 (1+2) sin 2w (33)
where
20 de)
b de
(34)
. Sd?
LA
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and the initial conditions are

W= Wy

; at t=0 (35)
e=20=%a' (xo-+a cos 2ewy)

Separating the variubles in equation (33) yiclds
the phase plane integral

2—In (1+ z)=% PR —sin? @) (36)

where the constant of integration, k2, is given in
terms of the initial values by

32 - sin? Wr% [2o—In (1+2)] (37

Elimination of the constant, &% gives the phase-
plane integral the alternative form

1+z

1+Zg

z—zo—In =% YHsin? wp—sin?w)  (38)
This form will be useful in those regions in which
the constants ¥ and £ turn out to be complex
numbers.

The phase-plane integral, equation (36), is an
implicit differential equation, since z contains the
derivative dw/de. The first problem is to obtain
z explicitly as a function of w. To do this,
introduce a new variable, w, defined by

wr=y(k?—sin? w) (39)
Then the differential equation (33) becomes

2 itz (40)

dw
and the integral, equation (36), beconies
L »
z—In (1—}—z)=§ w 41

Expanding the logarithm in a Maclaurin’s
series gives, near the “origin” (z2=0, w=0)

2 E
w2=Z2—'g 23+§ 24—§ AR

so that w(z) and z(w) are both double-valued
functions, with a branch point at the origin. It
then follows that z is a double-valued function of

w, and so is dw/dn. Tt is only this condition that
is of any physical significance, since w occurs in
the equations only in the squared form. Conse-
quently, it is permissible to choose, arbitrarily,
one ol the branches of z(w), as long as both
branches of w(w) are retained. The branch of
z(w) that will be chosen here is the one for which
zfw—1 as w->0.

Equation (40) can be solved formally to give
z{w) as a Muaeclaurin’s series:

=2 2w 42)
n=1

where the coefficients, z,, satisly the recurrence
Telations

21=1
1
£r =3 (43)
n—2
(n+1)5n:2n—l_kf__} (ln_%_l)sk-}-lzn—l:’ ’223}

The first few coeflicients are

The other branch of z(w) is obtainable simply hy
changing the sign of each odd-numbered coeffi-
cient, z,, and the ouly effect of such a choice
would be to interchange the two branches of
dw/dv considered as a function of w.

The radius of convergence of the series (42) can
be obtained by finding the singularity of z(w) that
is closest to the origin in the complex plane.
From equation (40) it is evident that singularities
oceur (dz/dw=w) when z=0, w0. Since the
logarithm is a multiple-valued funetion, equation
(41) gives the desired radius of convergence, w,, as

;

we=v2{In 1]=+22ri| =27 (44)
Equation (41) gives the region of convergence as:
—0.9993<#,<(8.5385 (45)

(learly, the quantities ¥ and w will be real only if

b>0
1+z>0} (46)

simultancously. It can be shown that these con-
ditions are satisfied in the region
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62°.6-C7,<(68°.6 (47)
for ecastbound orbits. For westbound orbits, 7,
should be replaced by 180°— 7, throughout.

The upper limit is independent of the oblateness
parameter, J, and of the elements of the orbit.
The lower limit is relatively insensitive to these
quantities; for example, it becomes 62°.7 in the
extreme case of J=0.1, ¢,=1, p,=2, the nominal
values for a grazing, parabolic orbit about a highly
oblate planet like Saturn.

Sinee these boundaries correspond to —1<z
<, it is clear that the region of convergence lies
inside them (sec eq. (45)). Neglecting higher
order terms in J gives the region of convergence as

62°.61< T,< 67°.41 (48)
and both these bounds are relatively insensitive
to the oblateness and orbital parameters. Thus,
for a grazing, parabolic orbit about Saturn the
region of convergence is

62°.73<1,<(67°.48 (49)

dw

av

This region of convergence will be called the
“elliptic region,” since it will appear that the solu-
tion in this region can be expressed in terms of
elliptic functions.  Similarly, the remaining region
will be called the “trigonometric region.”

The phase-plane integral, equation (36), is
shown schematically in figure 2 for the elliptic
region. No scale is shown on the vertical axis,
since this depends on the oblateness parameter,
J, and the orbital parameters ¢, and p, in a non-
linear fashion. Each curve represents n fixed
value of k.

Actually, the initial values of the apsidal
position and velocity cannot be assigned arbi-
trarily for any phase-plane curve of constant £,
since they are related to the other parameters
I, e, and p, through ecquations (30) through
(32). Thus, il «, 1y, e, and p, are specified a
priori, then & and (dw/dr), are determined, and
the orbit is represented by the corresponding curve
in the phase plane. Tt will be seen later that, as
the curve is traversed, the parameters [ and p
change. Thus, any attempt toregard an arbitrary
point as a new “initial value” would require

Ficure 2.—The Phase-plane integral.
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recomputing the parameters &, a, and b, and hence
would lead to a new value of £, and thus to a new
curve in the phase plane.

However, the two curves would differ at most
by terms of 04%J; figure 2 can still be regarded as
qualitatively correct, and certain features of the
orbits can be deduced from it.

Thus, when £<{1, the argument of pericenter,
w, is bounded and periodic, being restricted o the
region given by 'sin w; <k Pericenter oscillates
about the node and never reaches the points of
maximum declination. This is known as the
libration region.

When £>>1, the apsidal velocity, dw/dr, never
changes sign. The apsidal motion is secular,
with periodic oscillutions superimposed, Tt will
be seen later that this is true throughout the trig-
onometric region also. This is known as the
secular region,

When k=1, the apsidal motion is aperiodic.
The argument ol pericenter approaches monotoni-
ally the point of maximum declination; it will be
shown later that this approach takes infinite time.
This limiting case is known as the scparatrix,
and the limiting points as saddle points.

The curve £=0 reduces to a single point (sce
fie. 2), at which @=0 or = (ascending or descend-
ing node), and dew/dr=0; that is, there is no apsidal
motion. This occurs when

and the angle of inclination at which this occurs
is ealled the critical angle, denoted by 7. Ne-
glecting higher powers of J gives the approximation

cos? [(gé ]
5 f (50)
T.~03°.435

and again this quantity is relatively insensitive
to the orbital and obluteness parameters.  Thus,
for grazing, parabolic orbits about Farth and
Saturn, the values are 63°.437 and 63°.576,
respeetively.

The series expansion (eq. (42)) is one represen{a-
tion of dw/de as a function of w, and its region of
convergenee has been determined; namely the
elliptic region given by equation (45) or (48).
Tt is now desired to obtain a solution outside the
elliptie Tegion, To do this it is convenieni fo

AERONAUTICS AND SPACE ADMINISTRATION

make the following transformations of varinbles:

) ]
1424
z=zo+ (1120
22 1)
>\:7.I_“__ Y =L, {cos 2e—c0s 2wg) r
220 €5}

. f,f({l‘*’)

AN/ S J

Then the differential equation (33) and the phase-
plane integral (38) become

[ (140) | f=14¢ (52)
and ) )
,\—'g<1+f s+ (53)
2o/ %o

respectively.
A formal solution of equation (52) is given by
the series

r=§ EAn (54)

where the coefficients, ¢,, satisly the recurrence
relations

G=1
1\ 2] =
Ot D5 =5 (14 ) G Dot 69
n>1
The first few coeflicients are
1
g-_—_zjo
1 1
=35 T2z
1 5 5
S P T

Again the radius of convergence is obtained by
finding the singularity in the complex plane
(l¢/dh= =) nearest the origin. Equation (52)
gives

—Zo

142

‘(: g‘rz
and then equation (53} gives

AT\(,E—H,—J— In (142
Zp
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and there are two cases, depending on the sign

of (142p).

Thus, the radius of convergence, X, is

i 14200

Ne=| =1 (120
2o

M‘\//[-—Hi]n (—1—2,,)]2+<£;>§ (56)
it 1--24<00

Iu particular,

if 30:0
(57)

A;Z © if 20:_1

Note that in the elliptic region, where 1+2,>>0,
the radiug of convergence, X, can be put in the
form
wy’
9.

“2g

Next it will be shown that the two regions of
convergence, clliptic and trigonometric, do over-
lap and do cover all possible cases.  This will be
done by obtaining simplified expressions exhibit-
ing the dependence of the various parameters v,
k, N, cte., on the oblateness parameter, J, and
the orbital parameters, wo, eo, and pe, and by giving
typical numerical examples buased on exact cal-
culations.

Throughout, the oblateness parameter, oJ, will
be subjected to the restriction

J<0.25

When reference is made to Earth or Saturn, the
caleulations are based on the nominal values

{ 0.0016 for Earth
J=

Lo.1 for Saturn
To obtain bounds for certain quantities, it is con-
venient to extend the class of satellite orbits to
include eseape orbits.  Tn particular, the param-
eter 2ey/po will occur frequently.  Since

Pt):(]u(l J:’90)

where e, is the eccentricity, po the semilatus
rectum, and ¢ the pericenter distance, it is clear

that, for the limiling case of grazing, parabolic
orbits,

eo=1

Q=1

Po=2

2e0/po=1
and, for satellite orbits,
201
7 >1

FASES

The analysis will be carried out only for east-
bound orbits, 0°<7,°<90°.  All the results are
valid for westhound orbits when I, is replaced by
180° -/, throughout.

Consider first the paramecter,
the role of a seale [actor:

/5

2(1\’ b,

Taking cos? Jy=1/5 gives the approximation

=275 (52) V7 (39

Actual values are shown in figure 3 for grazing,
parabolic orbits. For comparison, equation (59)
gives

v, which plays

lyl=

{0.11 for Earth

L0.87 for Saturn

Thus, in the elliptie region, |y] is essentially inde-
pendent of the inclination angle, so that it is, in
fact, a scale fuctor.

Next, consider the parameter, &, which will
subsequently be identified as the modulus of
certain elliptic functions.  Setting w=
= in equation (39) (fig. 2 shows this is permissible
without any loss of generality) gives

Wy
Y

b=

Since w, is essentially a function of the inelination
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il

'

P
-

/
//

Saturn

— | A i 1

Earth

1 L 1 i 1 J

640 645
I

65.0

o> 99

655 66.0 66.5 67.0 67.5

Frorre 3.—ODblateness scale factor for grazing parabolic orbits.

angle only, cquation (59) gives the [unctional
form

kP p(1)

€ny

(60)

Numerical values are presented in figure 4, where,
for convenience, the reciprocal, 1/k, is plotied in
the secular region.

The serics expansion (42) was shown to have
the radius of convergence w,=2y7. Hence, by
the Cauchy-Hadamard theorem (ref. 9, pp. 154-5),

| R e
E=h;n VIza|

Thus (ref. 9, p. 91), for any e,

n 1
Viza| <y te
for all n>N(e). 1Hence
\§ A\
lzntvu"i<<%ji+eiztr‘u€>

and the speed of convergence is determined
essentially by the value of the convergence pa-
rameter |wy/w.]. This parameter depends essen-
tially on the inclination angle. Numerical values

are presented in figure 5, which shows clearly the
insensitivity to the oblateness parameter, oJ.

Similarly, for the trigonometric region the
natural convergence parameter is A/A,. By equa-
tion (56), the radius of convergence, A, is cssen-
tially a function of inclination angle only, while.
by equation (51}

o 2a 2a
NS
(5] I

0 4

Equations (31) for z, and ¢ then give the propor-
tionality, for fixed but arbitrary 7o,

~1(5)

for the dependence on J, e, and p,. Numerical
values for the region outside the elliptic region
are presented in figure 6, with scales at left and

max

right for Earth and Saturn, respectively. Thus,
outside the elliptic region,
A 0.0024 for Eurth
— < 62
I)\c]‘ {0.15 for Saturn } (@2)

and the speed of convergence of the series (54)
is quite satisfactory.
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Eorth

Saturn —_———

- Frarre 4 —2Y odulus of clliptic functions for grazing parabolic orbit.

62.5 63.0 635 647.0 64.5 65.0 655 €66.0 66.5 67.0 67.5

Ficure 5—Convergence parameter in the clliptic region.
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0024 _ 50
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’\c! ;IZ
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0008 - 050
0004 |- - 025
1 1 { | il 1 H 1 1 J o
o 10 20 30 40 50 60 70 80 90 100
Ip, deg
TigurE 6.—Trigometric econvergence factor in trigometric region for grazing parabolie orbits.
Tt remains to be shown that the elliptic and  Taking the worst case, wy=1/2, =0 gives
trigonometric regions do indeed overlap. Con- N :
sider, first, the trigonometric convergence factor ;)’T__ [ (66)
at the boundary of the elliptic region. By e
equations (51) and (58) Thus, the convergence boundary flor the trigono-
metric series is k?==2, and here the elliptic con-
I ]L!"’fwo (63) vergence faclor is, by cquutions (39) and {59),
Wy* 1
w 2¢
KPS PR o>/
{We l\277"; Pu

At the boundary, w?=4r and equation (51)

then gives

-fn 1
(

(64)

OGJ(

the second inequality following {rom equation (59).
Thus the trigonometric series does converge at
the boundary of the clliptic region.

Conversely, the boundary of the trigonometric
region can be obtained from equation (63) by
inserting w and wy, from equation (39):

In]17v3(sin?® wy—sin?® o)
b\_c’_ V2(F—sin? w,)

(65)

and the overlapping ol the convergence regions
has been established.

Tt is of interest to determine the speeds of
convergence in that region common to both the
elliptic and trigonometric regions, and to deter-
mine the point at which the speeds are equal.
Equations (39) and (66) give

A 1 kv | w e
'_ = i g (
1>‘cl ILZ 2\'7r} 'wt' (“
Equation (59) then gives
2371 1.3 p
P—k= = D 68
Al VT 2 (09
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This gives, in the worst case of grazing, parabolic
orbits, for Earth, Saturn, and the extreme case
J=0.25,

k=3.32,18,1.62
A w
Ml e

<0.10,0.45, 0.62 (69

respectively, and the dependence on J, ¢, po 18
given approximately by the equation

w]_ 3 /(2(’0>2—_
il e e A
w =V

(This approximation gives 0.12, 0.46, 0.63 in eq.

(69)).
Thus, in the case of the Earth, one can always
choose a series that converges more rapidly than

i‘, 1 [2ey 2/3]"
n=1 ]U (Po )
and this worsl case occurs ouly in the common

region. In the libration and purely trigonometric
regions the corresponding, dominating series arc

or

“0)

A
Ac

o d n
> (0.031 -2-‘°°>
n=1 To

and
© D NI
S| 0.0024 (“ “) :l
n=1 o
Earth
o -

15

respectively; henee, ruthless truncation of the
series is justified for Earth satellite orbits, espe-
cially for those of moderate eccentricity!

A single convergence parameter, v, can be de-
fined as {ollows:

in the overlupping region, while » is defined to be
lwhw,] or [MA] in the purely elliptic or purely
trigonometric region, respectively.  Then  the
geomelric series

S
A

.. Lap |
y=minimum {  —i»
W,

is a dominant for all the series. This “optimum
convergence parameter,” v, is shown in figure 7,
for the overlapping region.

Tt should be emphasized that the quantitics
VoI and WJ play distinet significant voles.  As
will be seen (e.g., eq. (89)), the width of the libra-
tion region (range ol inclination angle) is pro-
portional to \oJ, and this region disappears as J
approaches zero.  Also, the secular velocity ol
pericenter vanishes with J.  However, the speed of
convergence of the series in the overlapping region

is proportional to ’\J, by equation (70), and this

Saturn

06 - \ Saturn -3
v \ v
04 - \ o,

\
\
~
~
02 ~ - .
T~
e] 1 1 I ; t — 40
62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 665 67.0 67.5
I _, deg

o

Frevre 7.--Optimum convergence factor.
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determines the number of terms of the scries
required for a specified accuracy.

The series representations of the phase-plane
integral, equations (42) and (54), are of the form

dw ..
—-=series In w

v

It would be more convenient to express the recipro-
cal, dv/dw, in this form. This can easily be done.
For the elliptic region, equations (34) and (40)

yield
de 2ua /1 dz
de b (w Fu_)_l>

The transformation equations (51) then yield, for
the trigonometric region,

@-:_ l:(l +2) —_‘?o:l

Inserting the series expansions for z and ¢ gives the
desired equations

r 2(1
([w HZ (“—E 1)'71{‘-1"’ —1] (7])

u‘2:72 (K"—Sln2 w)

for the elliptic region, and

' 1 N\
L o)zm-ﬁm,mx—?o]

([w wq n=0

a
A=— (c0os 2w—cos 2wy)
wy

for the trigonometric region,
In the following sections these equations will be
solved, yielding the implicit solution

r=0(w)
This will then be inverted to obtain
w=w(v)
Equation (31) then yiclds

z»—@—-a cos 2w (73)

de

without any additional integration. Tt is then
simply an exercise in algebra to obtain the angular
momentumn, semilatus reetum, and inclination
angle as functions of the true anomaly, ».

AERONAUTICS AND SPACE ADMINISTRATION

SOLUTION OF THE APSIDAL EQUATIONS IN THE
ELLIPTIC REGION

In order to simplify the analysis, the initial
position of pericenter will be {aken at the ascending
node, wy=0. Figure 2 shows that this entails no
loss of generality, except in the portion of the
libration region centered at the descending node,
w@y=m. The results to be obtained can be applied
to this case il w and w, are simply replaced by
w—m ahd wy—, Tespectively.

To insure that both branches of the phase-plane
integral are retained, it is sufficient to define the
sign of the parameter, v, of equation (34), by

v= QHV/% Sign w()/ (74)

that is, the branches arc identified simply by the
sign of w,’ (see fig. 2).

It is now convenient to introduce a new inde-
pendent variable, ¢, and a new dependent variable,
¢, defined by

Y=02b sign wy’
(75)

s w=Fk sn ¢

where sn Jd=sn(d, k) is the Jacobian elliptic
funetion of modulus, % (which will not be written
explicitly).  Standard terminology for elliptic
functions and integrals is used throughout (sce,
e.g., rel. 10). Equations (71), (74), and (75) now
yield

cos w=dn ¢

%:k cn d (76)
w=kycnd

and the differential equation

Z% 1—~h(n¢9+7‘ (it D zn i (ky en 9)" (77)

Integrating term-by-term gives

1 - @
\1’:0'_'5 7[1(0)_*_;2 (n+l)5re H‘Y"In(d) (7R>
wheoere

J
I,(8)= f (k on 8,)dy,, n>1 )]
JO

These can be evaluated by means of the recurrence
relations of reference 10, pages 192-193; the
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first few are

I, (®)=arc sin (ksn &) h

A(a):zm)jL(J’gHzﬁ,l)ﬂ
> (S0)

13(0):(162——%> arc sin (& sn 9)

+;1— b sn ddnd
2 P

where Z(9) is the Jucobian zeta function, and
E, K are the complete elliptic integrals of the
first and second kind.

Equation (78) may be regarded as defining 8
as a function of two independent variables ¢

and v. Differentiating with respect to v gives
W, v)_ = [1 ° ) -
> w3 I, (%) nZﬂn(n%—])@,,Hy ]"(19)]

The scries converges in the elliptic region, and
z/w is bounded. Hence, ¢ is an analytic function
of v throughout the elliptic region and can be
expanded in a convergent Maclaurin series:

0j¢+;§ J, @) (81)
where
J

rp=5 [0 (52)
The first few ure
T =5 L) ]
T =g ken L —5 @)
Jolg)=—7 k0 () 1) - (33)

+ g FEen® D L)
1 ken ¥ LW+ o L)

Thus the argument ol pericenter, w, is expressed
as an explicit function of », the true anomaly, by
equations (74), (75), and (81). The remaining
variables to be determined are g, the pericenter
distance, p, the semilatus rectum, and 7, the
inclination angle, all of which are obtainable,
ultimately, from equation (73):

L 4
7]

w .
="° _qcos?2 7
r=a oS 20 (73)
Combining this with equations (34), (75), and (76)
gives

b 1
o D) (wz—wl)?):l (84)

I—'x(]

and it may be recalled that

=kyend
wo=kvy (76)
and :is a power series in w (eq. (42)). Equations
(30) then give
1, ., or
E=B| z—z0—5 (W’ —wy?) (85)
where
b (]—(’02)(] ‘g('())
ﬂ: N 7 ( )
2 12 _1) 45Tt 5lest

Note that 8 depends only on the inclination angle,
I,, and is independent of the planet (J) and ol all
other orbital parameters. Its graph is shown in
figure 8, where it is called the inclination scale
factor. The remaining variables are expressible
in terms of £ by equations (12) and (15):

P

T4e

Pericenter distance: g=
0

. ) (87
Semilatus rectum: p:—Y—"—— (87)

144 J
Inclination angle: cos® I=cos® I,(1+§)

The series presented in this and the previous
scelion constitute the complete analytic solution
of the problem in the elliptic region. The

.geometrical interpretation will now be given for

the three cases

Libration region: 0 <k<l

Separatrix: k=1
Secular region: k>1

In the interest of clarity and simplicity only the
dominant terms of the series will be retained; as
was remarked earlier, this is certainly justified in
the most important case of earth satellites.
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Frauvre 8.—Inclination seale factor,

THE LIBRATION REGION, 0 <k<1

Tigure 4 shows that / is essentially equal to the
critical value throughout the libration region.
Tlence, the parameters a, 4, 3, v can be approxi-
mated by their values at Iy=ar¢ tan 2, and il
w' >0 (fig. 2 shows that this can be done without
loss of generality), then truncation of the series
of the preceding section gives

\,b:l’\lﬁ
d=y +L15 yaresin{ksny)

sin w=A sn ¢

(/w ISTUR
%%k\‘_’bcn 0
g (88)

I=T.—FkAIend
dr 1

"]—:sA[\.)I) sin 2w
ae 4

q—qo+kaq(1—end)

dg 1

der 2

Ag+v2b sin 2w

with the following notation and approximations:

J 13 o
=are tan 2 4—5——={ 75775
Temare tan 2 +osm s (\100 30,
_ 07t
¥ anU(1+€U)
Vo= NS GG

159" (1 +¢)?

Y
Al=—

—4rq0
Agr=—7m—

1=""%7 )

The dependence of the critical angle, 7., on the
oblateness and orbital parameters is  shown
explicitly.  For satellite orbits, 0<¢,<{1, and, for
erazing orbits (go=1):

63°.437<71.<63°447 for Farth)
(90)
63°.573< 1, <64°.180 for Saturn )

The clliptic funetions sn and en are periodic;
they are qualitatively similar to the trigonometric
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functions sine and cosine, having unit amplitude
(deviation from mean value). However, the
period is 4K(F); when k=0, K=w/2, and as £
increases so does K as k—1, K—e logarithmically
(see rel. 10).

Thus w, 7, and ¢ are all periodic functions of
the true anomaly, », with the same period I”:

30K (1)’

orbital revolutions (91)
71'(’00]\ GJ

The minimum value oceurs when £=0, g,=1,
60:1“’,2:

> 100 {640,000 revolutions [or Earth
TJN6T 1,300 revolutions for Saturn

(92)

The orbital period of such a satellite is 4 hours
for Karth and 12 hours for Saturn, giving

200 years for Earth
r> ) \ 3
- { 1.8 years lor Saturn (93)

The quantities A7 and Ag are the maximum
possible widths of the oscillations in inelination
angle, 7and pericenter distance, ¢ The modulus,
k, is simply a scale factor relating actual to maxi-
mum possible widths.  The amplitude, A «, of the
oscillation in the argument of pericenter, w, is

Aw=arc sin k

Hence, pericenter oscillates about the node and
never reaches the points of maximum declination,
north or south.

Since the quantities dejdr, T, and q are identical
functions of ¢ (and hence of w), except for scale
and origin, the phase-plane plot of figure 2
represents all three, the positive direction of the
axis of ordinates being upward for dw/de and down-
ward for 7and . At the origin dw/dv==0, [=I,,=
I, and g=qu,=q,+kAq.  Writing

rp=ql
where 7, is the actual pericenter distance, and R

is the equatorial radius of the planet, gives the
“hall-width” of the libration region:

20,4 6] 3
AT="203 T 00,055
qo{1-+e0) !
. (94)
_\’v;I:Q("‘)\'G?IE

T+e, 15

Note that A7 does not depend on the actual size
of either the planet or the orbit, but only on the
size of the orbit relative to the planet (go); on the
other hand, Ar, depends only on the size of the
planet (). Of course, they both depend on.the
orbital eccentricily in the same way. Numertical
values for Karth and Saturn are

2¢0 {:’)’.li [or Earth .
Af=—210 05
QAT 144 \44’ for Saturn (95)

(96)

Ary— 2¢, {42 ki, Earth }

1-+ey | 3000 km, Saturn
The maximum rates of change are

2/ frevolution, Tarth
218 S . .
17/ /revolution, Suturn

I 0’7.0014 /revolution, Farth Y 97)
" 577.4/revolution, Saturn

16 em/revolution, Iarth
Tp: . .
7 5 km/revolution, Saturn

THE SEPARATRIX

When the modulus, &, is cqual to unity, the
lliptic Tunctions become hyperbolic functions

(ref. 10):
sn 9=tanh & } o
S

en ¢=dnd=sech 9§ { (O)

and equations (88) of the preceding section become

ST h
l,[/:l“\ 20

0:¢—|—;13 v arc sin (tanh )

sin w=Llunh &, cos w=sech ¢

([—w:\_'_)—g oS w
dv
> (99)
[=1,—Al cos w
dl 1 = .
A __ 2 AT\ 2
3 AT 20 sin 2w

g==qo+Aq(1 —cos w)

dg_1

- Ag2D sin 2w
de 2 N
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and, of course, the parameters are still given by
equations (89). The equations were derived
under the assumptions that we=0, w,/’>0. If
we=m, replace « by w—m; il /<0, change the
signs of dw/de and v.

The periodic character of the motion has dis-
appeared, or, stated differently, the period has
become infinite. The motion is aperiodie, or
asymptotic. For large values ol ¢ the hyperbolic
functions can be approximated by exponential
functions:

sin w=—tanh d=~1—2¢"%
cos w=sech J2e77

The limiting values, as d approaches infinity, are

T .
W=, Sign (w")

I.=I. (100)
qw:qﬂ+A([ J
The time required for w—w., I—/., or g-—q.

to decay by the factor 1/2 is

In2

yA e —

The number of orbital revolutions in this “decay
time” is
0.7 55 go*(14-¢,)?

N=—"—=5, Y
2wy 2b S8codv e

(101)

and this is a minimum when e,=1/2, ¢o=1. IHence,

72,000 revolutions for Earth
> (102)

L 146 revolutions for Saturn

Recealling that the orbital period of such a satellite
is 4 and 12 hours for Earth and Saturn, respec-
tively, gives the decay time

33 years for Earth
t> (103)
[ 0.2 year for Saturn j

Every ecase (wo=0, 7; />0, <0) can be
described in general terms as follows. Il the
orbital plane is initinlly on the equatorial side
of the eritical position, the apsidal motion is
direct, otherwise retrograde. In every case peri-
center asymptotically approaches the point of
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Equotorial caose

P
S
Eostbound Westbound
S= Satellite
P= Perigee
Palar case
N N
P
Eastbound Westbound

P

TFreure 9.-—Relative dircetions of motion of satellite and
perigee.

maximum declination. This is shown schemati-
sally in figure 9.
THE TRANSITION REGION, Lk >1

The region under consideration here is that
portion of the elliptic region (outside the separa-
trix) in which the elliptic series converge more
rapidly than the trigonometric ones. The transi-
tion from aperiodic motion to sccular motion
takes place in this region, with a concomitant
decrease in the amplitudes of the long-period
oscillations.

Equation (68) defines the transition region:

.>1
o (104)

[

1.

—

(O]

P—k<

i

<
(8]

3\

The specification of the region in terms ol in-
clination angle will be given Iater.

The elliptic functions change their character
when the modulus, ¥, is greater than unity, but
their original character can be restored by means
of the reciprocal modulus transformation (ref. 10,
eq. 162.01). Thus, throughout this section the
modulus of all elliptic Tunctions and integrals will
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be the reciprocal modulus, &;:

kl:%<1
' (105)
by =T
Equations (74) to (83) now become
Y=0+2b sign (w,")
w=am kd=arc sin sn k¥
sin w=sn kd F (106)
oS w=ch 9
w=rkydn kv J
with
I3 LW )
. 1
T@) =5 L¥)
1,. . i
Jz(‘P):g k(dn h!’)Il(\//)—‘IT 1,¥)
- - 107)
T ==z s kglen WIW)
1
—*‘m kdn2k) 1, ()
— o R W) L) 4o To)
36 dn k) 1,(§ 135 3 J
and
1
L= [ @iy (108)

The recurrence relations of reference 10, page 194,
give

L) =am ky

_rzan
L) =kZGd) + 55 k% (109)

Ia(\//):<k2~—;12—>a m kyb—{—% sn kg en by

Equations (85) to (87) for pericenter distance,
semilatus rectum, and inclination angle remain
unchanged.

Equations (69) and (106) give the bounds

0.36 for Earth
lw! < [ky|<
1.60 for Saturn

for the worst case of grazing, parabolic orbits.
Hence, the truncated series
1
z:w—{—g uw? (110}
is in error by less than 1 percent for Earth and 17
percent for Saturn, and the error decreases with
eceentricity. This approximation will be used
throughout this section; also the parameters a, b,
v, 8 will be approximated by their values at [y=
arce tan 2:

67 . A

T30 3¢’
1.
b:ﬁ J'ed?
. (111)
— 2 4 .
y==—2.75yT 2 sign (w")
Do

4

B=—= J

which are consistent in aceuracy with equation
(110).

The initial inclination angle, 7, can now be ex-
pressed in terms of £ as follows. Iquations (30)
to (33), with (111), give

4z
5c082 ] —]=—-"09
S5costl, 7
and this can be transformed, by equations (106)
and (110), into

Ty=arc tan 24-0°.855ky <1—|—i /cy) (112)

Hence the width of this region, in terms of the
range of permissible values of 7y, is

AlLy=1°71ky (113)
where k is the root of equation (68).
By equation (70),
3/ ey’
~alS 114
Mo A e (1)

The range, Al is plotted versus the eccentricity,
ey, in figure 10, for grazing orbits (gp=1). The
values in the figure can be scaled by dividing by
q02/3'

Tt is now convenienl lo regard J, k, e, and qo
as the primary parameters, since then 7, can easily
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Ficvre 10---Width of transition region versus cecentricity.

be obtained [rom equation (112). The well-known
properties of the elliptic functions can then be used
to express the solution in the following (approxi-
mate) form:

¥=0,2p sign (w,") \
(H_ﬂ'lﬁ 1!/—:—‘7

. ;}’\ I+

Gy vain by

S > (115)
i(, (1—JnA0)[ —~h 1”’””]

I—I,~T

7= Go+q

é(‘ 50 ¢

Gk (1--%)

where the tilde (~) is used to denote periodic com-
ponents, and the eclliptic integral K,=K(,) is
written with a subseript as a reminder that the
modulus is £,.

The common period of &, 1, and § is

P: ) ]\']I({
= by
5 iy

™y 2b (1 TR,

- orbital revolutions (116)

and the secular velocity of pericenter is

<1 ’
’ _blgﬂ Wy
Weee™

op (117
revolutions per orbital re\'u]utiun of the satellite.

At the separatrix P=eo, /=0, and the
motion is aperiodie.  As & increases, I’ decreases
and «f,, increases monotonicully. Their values
at the boundary of the transition region are shown
in table T for Earth and Saturn, for grazing orbits
(70=1).

The elliptic functions @m # and dn u are shown
in figures 11 and 12 in normalized form. For
small values of the modulus, £, they can be rep-
resented by the approximations
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~

am u_~l sin -7-
! I
(118)
7r"
1—(lnu~ k2 < —=
” K.
As the modulus, k&, increases, the curves are
progressively distorted; near the separatrix the
asymptotic approximations are

~ T . U
am uszg-—arc sin sech ll——‘—)‘f
2K, (119)

1—dnu~1—sech u

Since @im u is an odd function and dn uis an even
function, both with period 2K, only hall a period
is shown in the figures; ulso the approximations
(119) are only valid for |u|<K,.

Figure 11 or equations (118) and (119) can be
used directly to obtain the amplitude of the
oscillatory functions @ and 3. TFor example, in
the worst case of parabolic orbits, at the transition
boundary

0°.66, Earth

and

_ {0°.024, Earth
max || = 4{

k00'42’ Saturn

(121)

Tn other words, at the transition boundary the
secular terms are overwhelming, and
(122)

p— ! .
W= Wyl

The inclination angle and pericenter distance
can be studied by means of equations (115),
(118), (119), figure 12 and table I. Their
oscillatory components, 7 and 7, like @, decrease
monotonically with ;. Near the UM]QIUOH hound-

ary they can be represented by the approx-

imations
] ~N
;i kY (l lﬂ() (1-—(‘0% - ~)
1
~ 1
I=—3¢  (123)
rp="p0 A7,
A"p:—rp‘ DE J

max |w|= (120) Figures 13 through 16 show the values at the
=] [ .
2°.2, Saturn § transition boundary, for grazing orbits, as a
L0 =~
~
~
~
~
~
~
gl ~
~
~
~
~
~
N
8
3
& k = 1-5x100 k= 1-5x10°
ofE
at-
K, =.95
K =8
0 k=8
i L 1 1 1 L i i i
0 | 2 3 4 5 6 r 8 3 1o
u /K

Fravre 11.—The oscillatory part of wm u.
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|- dnu

vk,

Frevre 12.- -The elliptic function dn «.

function of cccentricity. For comparison, the dv &

LY Pm= 2k 126
values at the separatrix are also shown (sce eqs. 0 d LS_-"; ¢ €08 =He (126)
(94) to (96)).

Finally the approximation The recurrence relations for the ¢, {eqs. (53))

lead to the following equations for the A,
dw

(/v:k V26 sign wy'dn ko (124} - - B
Ag=1+(b42aw”) 25 ( ) S
0 = + twg') 'ngl N (20)0’)2"
shows that dw/dr, 7, and ¢ exhibit the same belhavior > (127
- P o
as functions of @, and again the phase-plane =2(—1)* (b +2aw,") 3 ") S
diagram of figure 2 represents all three functions = ‘ k) 2ay)?" ) g
with suitable choice of origin and seale. where
N
1
SOLUTION OF THE APSIDAL EQUATIONS IN THE BO:Z
TRIGONOMETRIC REGION \ (192
(128)
. . . . —2aw,’ 5 BB
The phase-plane integral in the trigonometric B, = 1 B,+b(b42aw") )“ +1—l
Tegion is given by equations (72), which can be put i=om
in the form
mthe ot The first few are
N
de 1
af TS (12) 0 Dy B=1
(125)
—2a . B. _737 b+ 2w’
A=, smlu 2 - adwg
Wy J
where the initial position of pericenter has been =5 b+ 3 baw,” + (2aw,”)*

taken at the node: w,=0. The powers of X can
be expressed as trigonometric polynomials, and

35 . .35, o
- . . —— ) H 2 N3
then dv/dw takes the form of a Fourier cosine series: g + ) b @ + b(aw" ) (Gaw)
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Equation (126) can be integrated to give v as a
Fourier sories in «, which in turn can be inverted
to give w as a Fourier series in » (ref. 7, appendix
E, eqs. (E23)):

w=w,/t+3 w, sin 2nw,’v (129)
n=1
where the secular veloeity is
w 4
o) =2 (130)
i 0

and the coefficients of the harmonies are infinile
series, the leading terms being

L A 13 3
T g, AR 15
N ] 2 .
_ ]_413 r; 1]112 3 4’113
@ 6 41' 8 ‘10 16 4’103 e J

The variable x can be obtained from equation (31)

by ino
I b sin 2w 31)

by expanding sin 2w in a Fourier series in #:

sin 2w=>_ S, sin 2nw,’v (132)
where
3 3
S1:1+w2——6 O)12 .. n
Semwtw,— .clwg-—%wg.
] > (133)
Sy= w2+§ w?
1 3
S4=w3+w1w2+6 Wy
J

Substituting in oquntion (31) and integrating gives

r—re=—0 Z e (1—cos 2nw,’tv)

n=1 &1

and then equation (30) gives £:

=30 £,(1—cos 2n4,') (134)
n=1

where
Jetet(ed— 1) (1 —e S,
24 nw,’

En: (]35)

and then the inclination angle and pericenter
distanee are given by equation (87)
N

e

14§

cos? T=cos? I,(1-+-¢)

(136)

These results can be summarized by retaining,
for simplicity, only terms through the second
order in J:

w=w, 4+ w, sin 20, 0+ w, s 40,0

\ ‘ (137)
£=£(1 =05 20,"0) +£: (1—cos 4w, "7)
where
’ ’ bTQ(I "
s []_2 —(72%";3] (138)
b-,U_’awU’ b+aw,’ |
\ (b+°(1w0 )(b% 4awy’)
“2 1(2w0)
1200 > (139)
Ez_ﬁpu‘i\:k(]z—"—l)“;(‘ﬂ") 112 i ””‘i,,
l 24w’ (2uy’)?
£ =j02%2(3c°2—1)(1 #002) (b’{‘?-’lwuq
’ 24 (2wy)? J

Thus the apsidal motion consists of a secular
term and long-period terms, while the inclination
angle and pericenter distance contain only long-
period terms. The secular velocity, ws/, is a
monotonic function of initial in-lination angle,
I, rveaching a maximum for equatorial orbits
and a minimum for polar orbits:

2 .
w,’ = —J? equatorial
o

WL polar
W, = 2])02? p <

Thus, for equatorial orbits,

1°.15/revolution, Earth
w,/ <

72°/revolution, Saturn
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and the corresponding period of the long-period
oscillations is

156 orbital revolutions, Earth
=
2.5 orbital revolutions, Saturn

Tt may also be noted that the secular velocity of
pericenter is essentinlly independent of the orbital
eccentricity, e, while the amplitudes of all the
long-period oscillations contain e? as a factor,

There are certain values of 7; that lead to
simple exact solutions, namely those for which
the coefficient w, or £, vanishes.

First, il the inclination angle, I, has either
of the values

62°.6
fo= {72°.4 (140)
then b-+2aw,”=0 and the exact solution is
w=w,'T ]
(141)

> 2, 2f 2__ 2
g=100 (&?’40:] ’)(1 ety (1—cos 2wy'?)
- 0

that is, the apsidal motion is purely secular.
On the other hand, il I, has either of the values

OO
I°‘{54°.7}

then all the £, vanish, so that 7 and ¢ are constant,
In this case the apsidal equations (31) become

(142)

dw
~~=,ta cos 2w

i

and the exact solution is

/ R
tan w:\/;“+z tan (1'\‘ro2~a“)
0 .
I—I, (143)
=

This is essentially the same as the equation relating
the true and cceentric anomalies in Keplerian
motion (ref. 11, pp. 62-63). The scries solution
for w is (129), where now the coeflicients are, in
closed form,

w," =zt a? (144)

1 a -

—— ] (14{)
o (J'o+\102"02> )

Tt may be noted that the phase-plane diagram of
figure 2 cannot represent all three variables dw/de,
I, and ¢ in the trigonometric region, since their
long-period components vanish at different in-
clination angles (eqs. (140) and (142)).

The amplitudes of the long-period perturbations
decrease very rapidly with distance from the
transition boundary. Thus, for example, when
]oi70°,
< {1”.7, Earth
— L 1.8, Saturn

0.30 km, Earth
Ay < 3
ApS { 165 ki, Saturn

1377, Earth
w;s P
147, Saturn

DISCUSSION

-1,

A direet, analytic comparison of the various
treatments of the eritical inclination problem is
almost impossible because of the multiplicity of
notations, approximations, and starting points.
No one theory has a monopoly on either simplieity
or accuracy. The present theory has the virtue of
using an intermediate orbit that eliminates the
need of considering the variations in the eccentric-
ity, but the price to be paid is the introduction of
infinite series rather than closed-form solutions.

One novel feature of the present theory is the
emergenee of certain inclination angles that elimi-
nate completely the long-period oscillations either
in the apsidal motion or in the inclination angle
and pericenter distance. The other is that the
convergence of the infinite series is rigorously
proved, so that precise error estimates are available.

CONCLUDING REMARKS

The present theory presents solutions of the
satellite orbit problem that do not exhibit singu-
larities at the critical inclination angle. Series
represeniations are obtained, their regions of
convergence are exhibited, and quantitative meas-
ures of their speeds of convergence are provided
for use in numerical computations.

Essentinlly similar results have been obtained
by several authors. However, the development
of new methods of solving old problems has al-
ways played an important role in the growth of
any science. The present method can be used to
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reduce any axially symmetric problem to two
dimensions. Thus it can be applied, for example,

to

study the effect of the earth’s magnetic field on

the orbit of an electrically charged satellite, or to
study the long-period and secular effects ol the

[

. Kozai,

su
sa
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n and the orbits of near earth

tellites.
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TABLE L--PARAMETERS AT TIHE BOUNDARY OF THE TRANSITION REGION
(a) Farth
. i Period (revolu- Secular motion
Eecentricity ki K, [v] v2h i tions) of pericenter
‘ per revolution
0 0 571 0 0 ’ co 0’
. 001 . 0394 1.571 . 000220 L 104107 2108 ! 07, 34
.0t . 0846 1. 574 . 00218 . 101108 4> 109 : 1.6
1 ‘ . 176 1. 583 . 0200 . 7851078 15105 5.0
.25 ' . 227 1. 502 . 0140 13431078 8310 8.0
.5 ! . 267 1. 600 . 0733 L 155X 1075 88X 10¢ 8.0
.75 . 289 1. 605 . 0043 (- H6108 9> 108 71
1 . 303 1. 609 . 110 ’ L 131108 1105 6.1
(b) Saturn
0 0 1. 571 0 0 o 0’
. 001 . 0784 1. 573 .00174 L5158 105 7600 1.4
.01 . 167 1. 582 L0171 L0013 104 1600 6'. 6
.1 339 1.619 145 . 3882102 400 277
.25 429 f. 652 348 661107 270 40
.5 495 1. 683 580 . 800102 210 45
.75 532 I. 704 745 L 7541073 270 40’
| 1 . 5h2 1717 . 870 676103 300 36’
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